ER 2240

Homework Problem \#038

Determine the Norton equivalent circuit with respect to terminals A and B.

Under open-ciranit conditions:

$$
\begin{aligned}
& I_{1}=\frac{15 \mathrm{~V}+10 \mathrm{~V}}{5 \Omega+20 \Omega}=\frac{25 \mathrm{~V}}{25 \Omega}=1 \mathrm{~A} \\
& V_{1}=(20 \Omega) L_{1}=20 \mathrm{~V} \\
& V_{0 c}=-10 \mathrm{~V}+V_{1}=10 \mathrm{~V}
\end{aligned}
$$

Under short-circuit conditions:

Using superposition:

$$
\begin{aligned}
& I_{1}=\frac{15 \mathrm{~V}}{5 \Omega}=3 \mathrm{~A} \\
& I_{2}=\frac{10 \mathrm{~V}}{20 \Omega}=\frac{1}{2} \mathrm{~A} \\
& I_{5 C}=I_{1}-I_{2}=2.5 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& I_{N}=I_{s c}=2.5 \mathrm{~A} \\
& R_{N}=\frac{V_{0 c}}{I_{S C}}=\frac{10 \mathrm{~V}}{2.5 \mathrm{~A}}=4 \Omega
\end{aligned}
$$

So, we have the following Norton equivalent circuit:

